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specifying alternative courses of action and the possible consequences of action.
SII Each of the consequences is evaluated in terms of its relative probability of

occurrence and its value to the decision maker if it should occur.
Decision analysis has been used primarily in business settings where values of

consequences can be measured in terms of dollars. In non-business environments,
however, non-monetary criteria may be of paramount importance. The situation is
further complicated if relevant values vary along more than a single dimension.

LThis paper reviews the psychological literature on the problem of assigning numerical

values when several value attributes (or criteria) are relevant to the decision inaker,
This literature is reviewed from both a descriptive and a normative point of

view. That is, how do people evaluate multi-attribute objects, and how should they?
A simple weighted average provides a good description of how people "o, in fact,
make such evaluations. The weighted average approach i's also n-propriate for many
normative purposes and several procedures for moking this evaluation process explicit

are discussed and criticized. a
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f INTRODUCTION

Most significant decisions involve choosing between courses of

ij action whose consequences involve multiple value relevant attributes. For

example, in buying a car the value relevant factors might include price,

appearance, steering and handling characteristics, fuel economy and resale

price. Within the psychological literature the terms multi-attribute or

multi-dimensional preference are used to refer to decisions of this type.

iJ This paper reviews the rapidly growing body of psychological research

addressed to the following two questions: First, how do people assign

IJ value to multi-attribute outcomes? And second, what are the most useful

procedures for obtaining a quantitative measure of the subjective worth

'4 of a multi-attribute outcome?

While most of this research is fairly abstract in nature, it is

pragmatically oriented. The procedures which have been developed are designed

[ for use in real world settings, and a number of studies have attempted to

determine which of these procedures are likely to be most useful in real

world contexts.

In organizing this literature it is useful to distinguish between risky

and riskless decisions, between normative and descriptive theories of choice,

and between intuitive and decomposed value judgments. Abstract theories of

decision making assume that for each possible course of action there is one+I

in"a



and only one outcome which will occur. At the time he makes his decision,

however, the decision maker may or may not be aware of what that outcome will

be. If the decision maker is able to specify with complete certainty the

outcome asscciated with each course of action, then the decision is said to

be riskless. A decision is said to be risy, on the other hand, if the de-

cision maker is uncertain as to the consequences associated with each course

of action but is able to express this uncertainty in the form of probability

distributions over the possible consequences of each act. 5
Thi distinction between normative and descriptive theories of choice

is somewhat arbitrary. Normative theories prescribe how the decision maker

ought to make his choices. Typically, a set of basic principles of rational

choice are postulated, then from these principles a rational strategy is

deduced. Descriptive decision theory, on the other hand, is concerned with

describing how people do in fact make decisions. But to the extent that

human choice satisfies some or all of the principles embodied in a particular

normative theory, then that theory will also be descriptive.

Finally, an evaluative process will be said to be intuitive if the syn-

thesis of value relevant information is entirely subjective. Most decisions

are made in this fashion. For example, after considering each of value relevant

attributes of a job offer, the prospective employee will form an overall sub-

jective impression of the desirability of the offer. In contrast, decomposed

evaluation procedures are more explicit and rely upon mathematical rather , I
than subjective synthesis of information. Broadly speaking these procedures

involve four major steps. First, the decision maker must explicitly list the

set of value relevant factors upon which he wishes to base his decision. Next,

2
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he must quantitatively assign relative importance weights to each of these

factors. Third, the decision maker must numerically assess the value of each

alternative outcome with respect to each of the value attributes. Finally,

an arithmetic combination rule can be used to calculate the overall value

IL of each alternative. In most cases a simple weighted average would be used.

The importance of the concepts described above is reflected in the oi-

U ganizatiou of this paper. The two major sections deal with riskless and risky

¶ decisions respectively. Both sections begin with a discussion of descriptive

studies of multi-attribute decision processes. Unfortunately, few studies

SHof multi-attribute preference have been conducted in a risky choice setting.

But for riskless choice a rather extensive body of research is available.

Next, each section discusses normative approaches to multi-attribute evaluation

problems. In both cases, special emphasis is placed upon the construction and

validation of decomposed evaluation models.

I
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MULTI-DIMENSIONAL VALUE ASSESSMENT IN THE ABSENCE OF RISK

Descriptive Theories of the Multi-dimensional Evaluative Process -"

A traditional economic treatment of riskless choice views the decision

maker as being able to make continuous trade-offs between value attributes;

these trade-offs produce the indifference maps upon which an economic analysis

of the behavior of consumers and firms is based (Stigler, 1966). The implied

psychological process is comPensatory in the sense that an increase in value

with respect to one attribute can compensate for a decrease in value on

any other attribute.

Psychological studies of the multi-dimensional evaluative process have -I

generally supported the compensatory trade-off model. These studies have

typically utilized the following paradigm. First, the subject is asked

to numerically assess the values of a set of multi-dimensional alternatives.

Notationally, the i-th alternative can be described by the vector (XI,X2,...$X

where X. denotes the j-th attribute of the i-th alternative. After the subject

has evaluted all of the alternatives, the experimenter attempts to fit a

statistical model to these judgments. A number of studies have shown that the

human judgment process can be very well represented by additive compensatory
Smdlso hefrmVXi i i i ii i"
models of the form V(X X2'""'X )=VI(XI)+V 2(X2)+''.+Vn (X) where VW(X.) is

the value of the i-th alternative with respect to the k-th attribute.

Three experimental studies provide particularly strong support for

this additive formulation. Tversky (1967) asked prison inmates to give

minimum selling prices for commodity bundles consisting of m packs of

4
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] icigarettes and n bags of candy. The hypothesis that tile cigarettes and

I candy contributed additively to the overall value of the bundles was

tested by analysis of variance. For none of the eleven subjects did the

Sselling prices exhibit a statistically significant (p< .10) departure

from additivity, and the mean within subject rank order correlation

Uf (Tau) between actual selling prices and those predicted by an additive

Smodel was .995. Sidowski and Anderson (1967) asked subjects to evaluate

the attractiveness of job positions described by two attributes: type of

work and city of employment. In two separate studies a statistically

significant interaction was observed; but in both cases additive approxi-

SImations accounted for almost all systematic variance (R=.986 and R=.987).

Similar results were obtained by Shanteau and Anderson (1969) who asked

their subjects to assess the value of varibus sandwich-soft drink com-

binations. Although significant interactions were obtained for five of

twenty subjects, additive models gave a near perfect account of the data

U, (mean R=.998).

Each of the studies discussed above utilized an analysis of variance

design, with subjects evaluating all possible combinations of the stimulus

attributes. This approach has two principle advantages. First, it provides

a direct tr-st of the additivity assumption (Anderson, 1970; Tversky, 1967).

Second, the analysis of variance may be used as a scaling procedure to obtain

the desired additive representation (Anderson, 1970). On the other hand,

analysis of variance designs also have major drawbacks. Factorial com-

binations of attributes can yield attribute combinations which could never

I
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occur in the real world (Slovic and Lichtenstein, 1971). And, as the

number of dimensions increases, the number of responses required of each

subject rapidly becomes prohibitively large. It is noteworthy that all

three studies above used only two value dimensions.

A number of investigators have attempted to bypass these difficulties

Sthrough us of a multiple regression paradigm. Subjects respond only to

a sample of the possible stimuli, then additive models are estimated by

multiple regression. Studies in this tradition have adopted the rather

restrictive assumption that each dimension contributes linearly to overall

value; although non-linear regression methods are available, they require

a large number of judgments by the subject. in addition, regression pro-

cedures provide no formal test of the additivity assumption, though the

multiple correlation coefficient provides a convenient measure of goodness-

of-fit. Finally, each independent variable must be represented as an

interval scale number. Use of qualitative attributes is possible only

if the experimenter arbitrarily assigns numerical values to these at-

tributes.

Studies utilizing this paradigm have generally provided strong support

for the additive model as a predictive tool. Huber, Sahney, and Ford (1969)

asked hospital administrators to evaluate the quality of hospital wards

described by seven attributes. All attributes were presented in numerical

form; inherently qualitative factors, such as cleanliness, were assigned

numerical scores ostensibly attained during the last hospital inspection.

6



After ratings of the wards were obtained the experimenters fit each of

the following three models to this judgment data.
Va 1 + a 2(X 1 ) + a3(X1) ... + a(X)

Here X~ i th i-t war, i is the k-th attribute of the i-th ward, and

'Kthe •k, •k and•- are parameters to be estimated via least squares. All
three models did an excellent job of accounting for the data, with median

within subject correlations of .969, .973, and .976 respectively. This

l•I insensitivity to the algebraic form of the model is counterintuitive, but

Sit is commonly obtained in studies of the judgment process.

In a similar study, Hoepfl and Huber (1970) asked engineering graduate
Hstudents and faculty to evwluate the teaching ability of hypothetical pro-

fessors. These judgments were based on from one to six attributes. Again
linear regression models did an excellent job of explaining the data. In

general, however, the degree of correlation declined (from .987 to .940)

as the number of attributes increased from one to six. Hoepfl and Huber

]] noted that this decline might have been due to some sort of information

overload effect. As the amount of information to be processed by the sub-

S~ject increased, his responses became increasingly subject to random error.

Inuer Daesimgarsuy Hf and Fordr (1971) obaneaeske favorabereslsing gadut

generstudy of the job p erences of prospective public school teachers. The

study used a mailed questionnaire as a response device, and subjects gave

41 7



ratings for jobs described by five attributes. Mean correlations of .89

and .71 were obtained for subjects with and without prior teaching ex-

perience respectively.

In summary, the studies above indicate that simple additive models

can do a rer•rkzbly good job of approximating the human evaluative process.

With the exception of the Haber, Daneshgar, and Ford (1971) study, median

within subject correlations for best-fitting additive models were in the

mid to high .90s. As Anderson (1969) has noted, however, these high cor-

relations do not necessarily imply the absence of any significant inter-

actions. In fact, two of the three studies which provided a formal test

of the additivity assumption found evidence of interactions. Even in these

cases, however, additive models exhausted almost all of the predictable L

variance.

Moreover, additive models have been found to be highly descriptive

of a variety of other human judgment processes. Personality impression

studies are concerned with the process whereby people synthesize infor-

mation about specific characteristics of another person in forming an

overall impression of that person. In general, these studies have found

that overall judgments of the attractiveness of a person can be predicted

by additive combinations of his specific characteristics (Anderson, 1962;

Anderson and Jacobson, 1965; Anderson, 1967; Himmelfarb and Senn, 1969).

The additive model has also received support from studies of clinical

judgment (Meehl, 1954; Golberg, 1968; Golberg, 1970), investment decision

making (Slovic, 1969), graduate admissions decisions (Dawes, 1970), govern-

mental budgetary decisions (Dempster, Davis, and Wildavsky, 1971; Crecine

8
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and Fischer, 1971), and corporate decision making (Blowman, 19(I6) "ih.

Sfliterature has been critically reviewed by Slovic and Lichtenstein (1971).

Despite the impressive predictive power of additive compensatory models,

-fl which permit cross-dimensional trade-offs, a number of psychologists have

questioned whether they are truly descriptive of the processes underlying

multi-dimensional choice. Skeptics generally argue that decision makers
I! utilize non-compensatory heuristic evaluation rules. In addition, it is

argued that people employ different heuristics depending upon the context

I H in which the decision is nkde.

Students of organizational behavior have argued that decision makers

frequently utilize a satisficing (or conjunctive) strategy (March and

V Simon, 1958; Cyert and March, 1963). In employing this strategy, the

decision maker (DM) first establishes a minimum acceptable level with

fjrespect to each value attribute. Any course of action which fails to

satisfy one or more of these minimal constraints is rejected as unacceptable.

So given a set of alternative courses of action, a satisficing rule will

B partition it into two subsets: those which are acceptable and those which are

not. If two or more alternatives are acceptable, additional considerations

must be introduced in order to choose between them. For example, DM might

choose that acceptable alternative which is "best" with regard to the most

important attribute. If no alternative passes the test of admissibility,

DM must either search for new alternatives or relax one or more of his
criteria. A disjunctive strategy, on the other hand, is concerned not with

acceptability, but rather with excelience. Each alternative is evaluated

only with respect to its most outstanding attribute, and that alter-

native whose best attribute is most desirable is selected. For example,

9



Sjif a disjunctive strategy were used by a college admissions office, a

student with poor mathematical ability but excellent verbal ability

would be favored over a student who was average in both regards.

Einhorn (1970,1971) has attempted to contrast the predictive power

of these heuristic strategies with that of additive compensatory models.

In his work Einhorn has used the following multiplicative approximations

to the conjunctive and disjunctive strategies respectively.
Ia i a 2  ian

V = X) (X "' . X)

Vd= [/(Cl-X0)]bl ]2-X b2... [/(c-X)b bn

Here the are constants such that Sk>max (Xk), and the ak and bk are

weighting parameters to be statistically estimated. The rationale for

these models is that they reflect the qualitative properties of the con-

junctive and disjunctive strategies. But in contrast to the strategies

which they represent, the equations are compensatory in nature. Moreover,

the equations are additive under logarithmic transformations. Thus,

Einhorn has, in effect, compared linear additive models with non-linear

additive models. In addition, he has demonstrated that additive models

are capable of reflecting a wide range of qualitative properties.

Einhorn employed a double cross validated paradigm in his experimental

studies. Subjects responded to two stimulus sets, with models estimated on

one set used to predict responses to the other set. In his first study,

dealing with job preferences, Einhorn found that the "conjunctive" model

10



gave the best predictions. In the second study, t1tVohl tg 'actal t(

evaluations :f prospective graduate !,tudents, a simple linear additive

model tended to do as well as or better than the two non-linear versions.

In view of the fact that the double cross validated design involved real

'Uprediction of new data, the obtained correlations (Rho) of .85 and .81

were quite respectable, and provide additional evidence of the repre-

sentational power of additive models. Einhorn's procedures do not, however,

allow one to determine whether or not subjects were utilizing non-com-

pensatory strategies.
Lexicographic rules constitute a third class of non-compensatory

heuristic strategies. To employ this approach DM first compares all alter-

natives with respect tothe most important value attribute. If one alter-

native dominates all others with respect to this criterion, it is selected.

U• If two or more alternatives are equivalent at this stage, they are compared

with respect to the next most important value attribute, and so on, until

only one alternative remains. Although this strategy is very inefficient

in the sense of systematically ignoring value relevant attributes of alter-

natives, Tversky (1969) has found that some subjects consistently employ

, H such a strategy. In contrast to other studies in which subjects were asked

to rate alternatives, subjects in these studies were asked to choose be-

tween pairs of alternatives.

A fourth heuristic model, deveioped by Tversky (1971) and termed the

Elimination By Aspects (EBA) model, shares certain features of both the

conjunctive and lexicographic rules. According to the EBA model each

T 1



alternative consists of a set of binary aspects or attributns. At

each stage of the decision process an attribute is selected with pro-

bability proportional to its importance. All alternatives which are

unsatisfactory with respect to this aspect aire eliminated from further

consideration. (Of course, if all are unacceptable, none are eliminated.)

Additional attributes are probabilistically selected until all but one

alternative is eliminated. Tversky (1971) has shown that EBA over-

comes major shortcomings of other probabilistic choice theories. This

theoretical superiority stems from the fact that attributes shared by

all alternatives do not effect the choice probabilities. Tversky has

conducted studies testing the implications of the EBA model and has ob-

tained fairly strong support for this formulation. Here again, subjects

were asked to choose between alternatives rather than to assign ratings

to them.

Tversky's evidence of non-compensatory decision making is difficult

to reconcile with the rather large number of studies for which additive

compensatory models have done so well. One possibility is that people

use compensatory strategies when they bid or rate, but use non-compensatory

heuristics when they choose or rank-order. It is also pos:.Ible that the

models in question are "paramorphically equivalent". Hoffman C1960) has

noted that it may be the case that algebraically different models, each

suggestive of different underlying processes, may be equally predictive

given fallible data. At present the issue is unresolved.

12
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iAiding the Decision Maker: Normative Procedures for Mu.ti-'dimensional

Value Assessment.

This paper uses the word "normative" in a fairly loc.e sense, The

Sprocedures to be discussed do not attempt to produce decisions which

are optimal in some absolute sense. Their goal is, rather, tp eiable

SIdecision makers to make better choices.

Simon (1969), Dawes (1964), and MacKrimmon (1968) have argl,,.ed the

normative merits of heuristic strategies. But, as both Raiffa (1969)

and Tversky (1971) have argued, the non-compensazory nature of th'.,se pro-

cedures seems extremely undesirable from a normative standpoint. Thus,

IIwe consider only compensatory approaches.

Bootstrapping procedures are an offshoot of attempts to apply linear

statistical models for descriptive purposes. The essence of this appr-,ach

is to replace the decision maker with a model of the decision maker. DC

composition strategies, on the other hand, require the decision maker to

make value judgments about individual value attributes and then combine

these judgments according to some arithmetic combination rule. Both

procedures are intended not only to relieve the decision maker of some of

his burdens but also to produce "better" decisions.

The Bootstrapping Technique. We found earlier that linear statis-

itical models could do a good job of reproducing a decisioi' maker's eval-

uations of mulci-attributed outcomes. Dawes (1970), Goldbe-g (1970),

13



Bowman (1963), and others have argued that it might be useful to replace

the decision maker with a model inferred from his previous judgments or

decisions. In routine decision making contexts this would free the de- L
cision maker to apply his intellectual abilities to more challenging tasks

(Yntema and Torgerson, 1961). Once developed, a computerized evaluation

model could rapidly calculate the values of thousands of alternatives.

In addition, it has been argued that bootstrapping can lead to improved

decisions. Underlying this assertion is the assumption that random error

is a major source of non-optimality in human judgment (Bowman, 1963).

Subjective weighting of dimensions, for example, might be overly re-

sponsive to momentary environmental events, or decision makers may be j
erratic in aggregating information across attributes. Statistical models,

however, can extract systematic effects while filtering out noise due to j

random error.

The assertion that bootstrapping models can improve upon the quality

of the decision process has received some support from real world studies.

Goldberg (1968, 1970) has found that bootstrapping can be used to im-

prove the quality of medical diagnoses. Similar results have been ob-

tained in the context of business decision making (Bowman, 1963) and the

selection of graduate students (Dawes, 1971). )

Although the full potential of bootstrapping has yet to be deter- (

mined, certain limitations seem inherent in the procedure. First,

14
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11it is ill.-suited for application to complex decisions without precedent.

S1For unless the decision maker is able to assign overall values to a

fairly large set of hypothetical outcomes, models cannot be estimated.

U And when faced with complex multi-faceted outcomes decision makers may

well be unsure of their preferences and thus unable to make the required

assessments.

Bootstrapping is also ill-suited to decisions involving a large

numb.-r of value relevant dimensions. For a number of studies have shown

B that atuitive judgments (upon which the bootstrapping model must be based)

tend to focus very heavily upon but a few dimensions of value (Slovic and

LiLichtenstein, 1971), so that use of a bootstrapping procedure for a problem

B involving ten or more attributes would essentially result in throwing away

value relevant information. Thus, application of bootstrapping will

probably be confined to routine decision making contexts involving many

decisions but few dimensions of value.

The Decomposition Approach. Bootstrapping procedures rest on the

L assumption that basically the decision maker knows what he is doing, but

that he makes his judgments in a noisy fashion. Decomposition, on the

I other hand, is based upon the assumption that decision makers are not well

equipped for the task of evaluating complex multi-dimensional outcomes.

Shepard was one of the first proponents of this approach. He argued that

while human sensory and motor capacities were developed to a high degree,

man's ability to process conceptual information was much less impressive.

I 1s



Studies of human inforwation processing, for example, indicate that people Li

can process only five to ten "chunks" of information at any one time (Miller,

1956; Norman, 1969; Fitts and Posner, 1969). People also display little

capacity to learn concepts based on three or more -interacting attributes

(Shepard, Hovland, and Jenkins, 1961). The limits on the human capacity to

make multi-dimensional judgments are perhaps best illustrated by the lit-

erature on human clinical judgment. Medical diagnosis typically requires

physicians to categorize patients on the basis of a set of signs, symptoms,

and test results. When asked how they make such judgments, physicians

report that they take into account complex interrelations between the

indicators available to them. Yet statistical analyses of the clinical

judgment process have consistently found that linear regressiois models

account for almost all of the consistent variance in these judgments (Gold-

berg, 1968; Slovic and Lichtenstein, 1971). Moreover, human clinical judg- :1
ments are not particularly accurate. Meehl (1954) found tat linear

statistical models outperformed trained diagnosticians. Slovic, Rorer and

Hoffman (1971) found low agreement between radiologists assessing the same

cases. Worse, even extensive training with -eedback on thousands of case

studies did little to improve the accuracy of clinical judgments (Gold-

berg, 1968). For psychologists working in this tradition it ;ias seemed

natural to assume that decision makers are also poorly equipped to make

value judgments across multiple criteria. Deeomposition procedures have "

been devised to improve the quality of the multi-dimensional evaluative

process.

)
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The following discussion considers first two methods for ob-

I]taining a decomposed value measure, and next the problem of validating

such a measure. The two scaling procedures discussed are fairlk repre-

sentative of those generally proposed, and both assume that values are

fladditive. The first is based upon direct rating scale judgments; the

second upon trade-off or indifference judgments. The "additive rating

LIscale" procedure is adapted from Edwards (1971), Fishburn (1965), Sayeki

(1970), and Hoepfl and Huber (1970), and entails four major steps.

1. Within each dimension, the decision maker ()N. must specify the

best and worst outcomes which could feasibly arise. When the set of alter-

natives is specified prior to the analysis, this is trivial. But it decisions

U are to be made over an extended period of time and applied to as yet un-

specified options, then good judgment is required in selecting these end-

points. Within each dimension arbitrary values of 100 and 0 may be assigned

to the best and worst feasible outcomes respectively.

2. Within each dimension, DM must assign numerical values to all out-

I• comes intermediate iA value to the best and worst. These numerical assess-

ments should accurately reflect value differences within a given dimension;

but they need not reflect value differences across dimensions. (In general,

they will not.) A large number of procedures have been devised for obtaining

interval scale utility judgments within a single dimension of worth (Fishburn,

1 1967), but in practice direct rating procedures have generally been used.

For each possible intermediate outcome on a dimension, the DM is asked to

17



assess a number between 0 and 100 which reflects the subjective value ii
of the outcome in question relative to the worst and best outcomes

on that dimension. When the value dimension is continuous, inter-

polation between well chosen points is necessary.

3. Next, DM must assign weighting factors reflecting the relative

contribution of each dimension to overall value. The weight assigned to

an attribute should reflect the range ef value produced by moving that

attribute from its lower bound to its upper bound. For example, in choosing

a job, the weight attached to salary might be relatively small if all offers

ranged in salary from $10000-to $11000; but, all other things being equal,

if salary ranged from $10000 to $15000, this factor might assume a consider-

ably greater degree of importance. Quantitative assessments of these weights

can be obtained by having DM assign a weight of 100 to the attribute with 5
the greatest value range. All other attributes are then assigned weights

in proportion to their associated value ranges. For convenience these weights

can then be normalized to sum to one.

4. A value may now be assigned to any multi-attribute outcome by

aggregating. the weights and values obtained above according to the additive LJ
cobnainjuewj'X V(X)• combination rule V(X',X2'...,Xn) =). If a decision is to be

made, that action is chosen whose associated outcome has the greatest value.

A variant of the additive rating scale approach treats values as being

organized in a hierarchy of goals, subgoals, sub-subgoals, and so on.
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11Miller (1969) and Sayeki and Vesper (1971) have developed procedures for

constructing additive models incorporating a hierarchical value structure.

In practice these procedures differ from the additive rating scale method

primarily in terms of the manner in which weights are assessed. Consider

the simple value hierarchy displayed below. W is the overall goal, and

BXlX 2, and X3 the major goals leading to !. Y1 1 Y2, and Y3 are subgoals

leading to X1 ; Y4 ' Y5 , and Y6 are subgoals leading to X2 ; and so on.

w

X X 2 X3

1 2 3 4 5 6 7 8 9

First, importance is allocated across the major goals X1, X2, and X3

Sand normalized to sum to one. Suppose for the purpose of illustration that

weights of .5, .3, and .2 are allocated to X1, X2, and X3 respectively. Next,

within each goal, importance is allocated across subgoals. For example, sup-

pose that within goal X1, relative weights of .6, .3, and .1 are assigned to

!j i
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YIs Y2 P and Y3 respectively. Final weighting factors for the P-asurable

attributes at the bottom of the hierarchy may be obtained by multiplying U
weights downward through the hierarchy. In the example, attribute Y1

would receive a final weighting of (.5)-(.6) = .3; attribute Y2 a final U
weighting of (.5)-(.3) = .15; and so on. In principle, weights obtained

through a hierarchical procedure should be the same as those obtained by L
direct assessment of the attributes at the bottom of the hierarchy. In U
practice this may not be the case. The hierarchical approach is most

attractive in situations where the "real" goals are vague and ill-defined. U
The hierarchy may then be used to select as attributes operationally

specifiable subgoals which are indicators of the decision maker's real

objectives.

The second decomposition procedure is adapted from Raiffa (1968, 1969)

and Toda (1971) and will be termed the "additive trade-off method". In

order to reduce notational complexity we shall consider only the three

dimensional case, but the procedure can easily be extended to a larger

number of dimensions. Let each outcome be characterized by the attribute

vector (a ,bJ,ck), and assume that the first attribute, a, is continuous

and can reasonably assume a wide range of values. This attribute will

serve as a base against which the other factors will be traded off. In

making these trade-offs one can exploit a property of additive models

alternatively referred to as monotonicity (Yntema and Torgerson, 1961),

independence (Adams and Fagot, 1959), or weak conditional utility
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independence (Raiffa, 1969). The basic idea is that preferences for

outcomes on any attribute or subset of attributes be unaffected by

the state of other attributes. A formal definition will be provided

later, but a simple example will illustrate this idea. Consider

outcomes on the a attribute. If for any b', cl', (a 1 ,b',c'IJ!(aj,b',c'),

then for all b_", C", (a 1 ,b",c");(aj,b",c"), where VSY is interpreted

kg as "X is not preferred to Y". This property assures that trade-offs

between any two dimensions do not depend upon the state assumed by

other-dimensions (Raiffa, 1969). The additive trade-off decomposition

relies heavily upon this property and may be decomposed into five major

sters.

1. DM begins by trading off the b wid c dimensions against the base

dimension, a. Arbitrarily we establish "standard outcomes" for each of

the three dimensions denoted by a ,b°, and c . These standard outcomes

have no particular significance in theory but in practice should be

selected so as to keep all judgments within the range of outcomes which

might reasonably occur. In trading off b against a we assume that a is

continuous and that for each outcome b1 DM can specify an a such that

(a0 ,bi ,c 0 )-,(a i,b 0 ,c 0 ), where X'-Y is to be interpreted as "DM is in-

different between X and Y". Intuitively, a should be selected such that

the difference in value between ai and a0 is equal to that between bi and

bA. Thus, value differences along the b dimension can be expressed in

terms of units of a. Similarly, c can be traded off against a so that for

each ci and aJ is specified such that (a ,b 0 ,cJ)-J(al,b°,c°).
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2. Next, we arbitrarily establish the standard outcome, (a°,b ,c°),

as the origin of our desired value measure, so that V(a°,b°,c°) = 0.

All other outcomes will be compared with this standard outcome. If the

standard outcome is preferred, then the value of the outcome in question 13
will be negative; if the outcome in question is preferred, then its value

uiii be positive. UI

3. OIM must next assess a value function over the base dimension, a with

b and c at their standard levels so that a0 must be the zero point of this U

function over a. Thus, the value function over a may assume negative values. LI
This functiois can be obtained by any of the scaling methods described by

Fishburn (1967); again, a direct rating method should be satisfactory. .I

4. Outcomes on the b and c dimensions may now be scaled in terms of

the value measure on a. For any b3 , for example, the trade-offs of the

first step specify an aj such that (a°,bJc°) is equivalent in value to

(a 3 ,b°,c°). Thus, by the assumption of additive values

V(a°) + V(bi) + V(c°) = V(ai) + V(b°) + V(c°).

So, by the prior specification of the origin, V(bJ) = V(a3 ). Similarly,

for ach ck there is an ak such that (a0 b° ck) (akb°,c°) so that

"V(C k) V(ak).

uk
be S. Combining these results, the value of any outcome (a,bJ,c) can

be computed from V(a ,bJck) - V(a ) + V(a3 ) + V(a ),where a2 and a are

obtained from the trade-off stage. Again, if a decision is to be made, DM
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IIshould choose that course of action whose associated outcome has the

13greatest value.

The additive trade-off decomposition is especially suited to problems

involving an important contipuous dimension such as dollars or lives saved.

Logically, it is equivalent to the rating scale procedure described earlier,

I and if p;-operly carried out the two methods should produce identical decisions.

Extensions of trade-off techniques to the non-additive case have been dis-

cussed by Toda (1971).

Validating a Decomposed Value Measure. The procedures described above

are not difficult to carry out. They have, in fact, been occasionally

LI employed in real world decision making contexts. Nevertheless, an im-

H portant question remains. Do these procedures provide an "appropriate"

measure of value? This problem of validation has been attacked from several

' [rather divergent perspectives.

When an objective (externally defined) measure of value is available,

[j validation is straightforward. For example, in certain medical diagnosis

contexts, bootstrapping techniques have been shown to do as well as or

better than physicians. But where value is concerned, such external criteria

are typically unavailable. Yntema and Torgerson (1961) argued, however,

that value measurement cechniques can be experimentally evaluated by creating

a simulated decision making environment governed by an arbitrarily specified

value structure. They trained subjects to evaluate the "worth" of geomet-

rical stimuli varying on three dimensions. Arbitrarily, the experimenters
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estblihe a non-additive Worth function assigning a score to each'h

stimulus on the basis of its three attributes. Each dimension was mono-

tonically related to overall Worth, and an additive main effects approxi-

S~mation to the true rule accounted for 94% of the variance. On each i

training trial subjects estimated the Worth of a stimulus and were then

given quantitative feedback on its true Worth. After extensive training,

test trials were conducted on which subjects received no feedback. On

these test trials, the mean correlation between subjects' estimates and

true Worth was .84. Finaily, for each subject a decomposed value model was i

constructed and used to predict the Worths of the test stimuli; here a

correlation of .89 with true Worth was obtained. A bootstrapping model, ;

based on subjects' responses to the test stimuli, also outperformed the

intuitive judgments of the subjects; again a correlation of .89 was ob-

tained. These results provide mild encouragement to those who believe

that decomposition or bootstrapping can improve the quality of decision

making.

Stronger support for the decomposition approach is provided by a

recent study conducted by Lathrop and Peters (1969). The experimenters L

had previously collected course evaluation sheets from fourteen intro- ;

ductory psychology classes. On these sheets students had evaluated the

S~course with respect to each of fifteen attributes. In addition, students

I had assigned an overall rating to both the course and the instructor. These
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'Hactual student ratings were averaged, and the average scores treated as

an objective value measure. Subjects in the experiments were not members

of these classes, and their task was to predict the evaluative ratings of

the students who had been. Two response modes were used. In the in-

tuitive mode, subjects were presented with average class evaluations with

1 respect to each of the fifteen factors and asked to predict the average

u overall evaluations. In the decomposed condition subjects assigned weights

to each of the fifteen attributes. These weights were to reflect the sub-

[3 jects' best estimate of the relative importance which an average student

would assign to each of the fifteen factors. These weights were combined

~ with the actual attribute ratings to obtain a decomposed linear additive

prediction of the actual overall ratings. For both teachers and courses,

decomposed models afforded better prediction than did the intuitive judg-

[j ments. For instructor evaluations, correlations of .973 and .896 were ob-

tained for the decomposed and intuitive predictions respectively; for class

U evaluations, corresponding correlations of .963 and .924 were obtained.

A Lathrop and Peters also found, however, that the weights assessed in the

decomposed mode were decidedly non-optimal when compared with weights derived

from multiple regression. The decomposed weights were relatively uniformly

distributed across the attributes, whereas the optimal statistical weights

were much more heavily concentrated on but a few factors. In this experiment,

the superiority of decomposition seems primarily to have arisen because

decomposed judgments are less noisy than intuitive judgments aggregated across
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fifteen dimensions, a result consistent with the information overload

hypothesis. Although it may seem non-intuitive that a decomposed model

with badly estimated weights can yield excellent predictions, O'Connor L
(1972) has found that additive models are amazingly insensitive to changes U
in weights. Nevertheless, practical implementation of decomposition

clearly requires additional consideration of the weight estimation problem.

Other approaches to the validation problem have also been proposed.

Miller, Kaplan, and Edwards (1967, 1969), working in a military context,

have argued that reliability over time is a minimal requisite of any value

measurement procedure.

If a subject's value judgments collected at any one time sys- Li
tematically differ from his value judgments for the same target
in the same situation collected at a different time, there would
be some doubt about the appropriateness of implementing either
set of values (1967, p. 364).

Miller, Kaplan, and Edwards also discuss the usefulness of convergence

(or "construct validity":) as a validating principle.

The basic idea of construct validity is that a test should make
sense and the data obtained by means of it should make sense.
One form of making sense is that different procedures purporting
to measure the same abstract quantity should covary (1967, p.367).

Convergence has, in fact, been the criterion most commonly employed
by psychologists. Bootstrapping models, for example, may be validated by

noting that they reproduce the systematic components of a decision maker's

intuitive value judgments. Prediction of intuitive judgments has also been

used to validate decomposition procedures. This may seem to contradict the

usual assertion that decomposed models are superior to intuition. But

given the relative insensitivity to weights in the additive model, it seems

26

t
4- .... .



[1

1jreasonable to expect a high correlation between intuitive and decomposed

ratings, at least for a small number of dimensions. In addition, it seems

Li reasonable to demand a high degree of convergence between logically equiva-

rJlent decomposition procedures.

Pollack (1964) was the first to employ this procedure. First, sub-

~j jects rated and ranked jobs described by eight attributes, then Additive

decomposed value models were developed. Rather surprisingly, Pollack

I found that decomposed models incorporating all eight attributes did a

u poorer job of predicting the intuitive ratings (mean R=.7) than did a

decimposed model including only the three most important attributes (mean

U R=.8). A closer examination of the data revealed that intuitive preferences

were based only upon the three most important factors, whereas the decom-

U posed models assigned some importance to all factors. Yntema and Klem

(1965) conducted a similar study in which experienced pilots evaluated landing

situations described by three attributes. Here, decomposed models did a

U good job of predicting intuitive preferences.

Hoepfl and Huber (1970) asked engineering graduate students and fac-

: ulty to evaluate the teaching ability of hypothetical professors described

by from one to six attributes. In the first stage of the experiment, in-

tuitive judgments were obtained. Next, each subject constructed an additive

decomposed value model using the rating scale procedure. These decomposed

models were then used to predict the previously collected intuitive judg-

ments . Median correlations between decomposed and intuitive judgments ranged

from .87 to .98, with the degree of correlation generally declining as the
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number of atrributes increased. Again, the decomposed weights-differed

signifikant•, from the optimal regression weights which-were-concentrated i
more heavily on a few key dimensions. -..

Huber, Danesligar, and Ford (1971) asked prospective school teachers to

give intuitive judgi;nts of the attractiveness of hypothetical jobs, then

developed rating scale decomposition models. Both tasks were accomplished

by mailed questionnaites. In this study the convergence between intuitive

and decomposed ratings was much lower, with median correlations of .62

and .67 for those with and without prior teaching experience respectively.

Although these results are somewhat discouraging, it should be noted that

this was also the only study for which statistical models of the subjects

failed to give a good account of ".he intuitive judgments. Apparently,

the experimental procedures used introduced a large amount of error variance

into the intuitive judgments.

Pai, Gustafson, and Kiner (1971) evaluated the predictive power of three

Sdecomposition procedures. First, subjects rank ordered the attractiveness

of ten universities described by four attributes. Next, three decomposition

models were constructed. In the first procedure, scales within dimensions were

obtained by having subjects draw them on a sheet of graph paper. The second

method obtained scales within dimensions by means of ratio type direct es-

timates. The final procedure required a set of fairly complex cross dimen-

sional judgments and was designed to cope with possible non-additivity. A

correlational analysis revealed that the "draw a curve" and ratio based ad-

ditive decompositions were approximately equally predictive of the intuitive
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rank orderings (mean rank order correlations of .81 and .77), but that the

non-additive method was substantially poorer.

Von Winterfeldt (1971) also compared the predictive power of two de-

U composition procedures. First, subjects ranked a set of apartments described

by fifteen attributes. Then two additive decomposition models were developed.

L The first model used weights obtain,' in the manner described for the rating

scale method. The second model used weights obtained by direct assessments

of the value ranges associated with each attribute. Then, after extensive

discussions of the relevant aspects of the apartments, subjects reranked

the set of apartments. For both decomposition methods, median correlations

with the second set of rankings were in the low .80's. -In view of the

number of dimensions involved, the degree of convergence obtained is quite

impressive. Possibly the procedures encouraged subjects to consider more

factors in making their intuitive judgments than would usually be the case.

Fischer (in prep.) has conducted two studies, both of which yielded

a high degree of convergence between decomposed and intuitive judgments.

B Subjects in the first study evaluated hypothetical compact cars described

by e&ther three or nine attributes. Each subject utilized two intuitive

f response modes. In the Intuitive Rating Scale mode subjects rated a set

of compact cars on a 0 to 100 scale. For the Intuitive Dollar Difference

w.iode, subjects compared each car in the stimulus set with a "standard car"

ii which was approximately average in all respects. After specifying which

of these two cars he preferred, the subject assessed the dollar difference
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Li
in value between the two cars. Each subject also constructed two de-

composed value models. The first of these was an Additive Rating Scale,

decomposition of the type described earlier. Subjects also constructed

an Additive Dollar Trade-off model. Here, a slightly modified version of

the previously discussed additive trade-off method was used. Within

dimension value differences were traded off into dollars. These dollar

differences were then assumed to combine additively across dimensions.

All intuitive judgments were obtained before the decomposed models

were developed. These models were then used to predict the intuitive

judgments. Intuitive Rating Scale judgments were correlated with the

values predicted by the Rating Scale decomposition; Intuitive Dollar

Difference judgments with the values predicted by the Dollar Trade-off

decomposition. For the Rating Scale response mode, median within subject

correlations of .95 and .93 were obtained for three and nine dimensions

respectively. For the Dollar Difference response mode, corresponding

correlations of .92 and .97 were obtained. These results suggest that,

to a fairly high degree, intuitive and decomposed value measures are

tapping the same underlying attribute - subjective value.

This experimental design also permitted a second application

of the convergent validity criterion. As was noted earlier, the two

decomposition procedures are in principle equivalent, and should lead to

the same decisions. The same ought to be true of the two intuitive value

measures. Below are the results of a correlational analysis which contrasted

the degree of convergence between the two decomposed measures with that be-

tween the two intuitive measures.
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M Three Dimensions Nine Dimensions

Median correlation

between Intuitive .92 .95

Measures

M•edian Correlation
between Decomposed .98 .97

Measures

1 Although all of these values are encouragingly high, decomposed measures

showed a higher degree of convergence for both three and nine dimensions.

In the second experiment, subjects evaluated job offers described

by three attributes--city, salary, and type of work. Because the ex-

periment was primarily concerned with risky choice, only one riskless

response mode was used, the 0 to 100 scale. Each attribute assumed only

three states, and subjects evaluated all of 27 possible combinations of

these attributes. Next, an additive rating scale decomposition was

constructed. Again, the intuitive and decomposed methods yielded strikingly

similar results (median R=.965). All subjects were experienced professionals,

and all decision tasks were in the subjects' fields of expertise. Subjects

assigned weights to siz criteria using six different weight estimation

procedures. One procedure relied solely on rank orderings, one on ratings,

three on paired comparisions, and the last was an iterative procedure re-

[ quiring successive comparisons and ratings. Within judge reliability across

wr ghting procedures was very high. For engineering design tasks, cor-

relations were typically between .99 an' 1.0; for personnel selection tasks,

correlations were only slightly lower.

Sayeki and Vesper (1971), on the other hand, found that hierarchical

procedures generated systematically different weights than those obtained

by direct evaluation of the attributes at the bottom of the hierarchy. The

degree of discrepancy increased as the number of levels in the hierarchy

increased.
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•. I Huber, Daneshgar, and Ford (1971) suggested a third and final

criterion for validating multi-dimensional riskless value measures.

In their study of the job preferences of prospective public school

teachars, they developed both bootstrapping and decomposed value

models. Subsequently, the authors obtained data on the set of job

offers actually received by each teacher, and on the job selected from

that set by the teacher. Thus, it was possible to evaluate both the

bootstrapping and decomposition models in terms of their ability t'"

predict real decisions. For the experienced teachers, decomposition

models predicted the job selected in ten of fifteen cases; bootstrapping

models predicted only seven of fifteen choices. Results were generally

poorer for those job candidates without prior teaching experience, but

again the decomposition models were better, predicting eight of fifteen

choices as contrasted with only two of fifteen for the bootstrapping

models. Huber, Daneshgar, and Ford also computed the proportion of

cases for which the .job actually selected fel'l in the upper quartile

of the ratings produced by the evaluation models. For the experienced

teachers, twelve of fifteen fell in the upper quartile of the decomposed

ratings, only ten in the upper quartile of the bootstrapping models. For

inexperienced teachers, comparable figures of ten and seven of fifteen

were obtained. In general, the decomposed evaluation models did a good

job of predicting the real job choices of the teachers, especially for

those with prior experience. This predictive power is all the more out-

standing in view of the fact that the real choices may have been influenced
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by factors not included in the decomposed models. For example, some

teachers had to take jobs in the towns where their husbands resided.

To summarize, three approaches to the validation problem have been

considered. Although the data are sparse, comparisons with external

value measures or with subsequent decisions of major importance haveJ ,o revealed a high degree of ,:onvergence. Comparisons between intuitive

and decomposed judgments, for which a fair degree of data is now avail-

able, have produced somewhat more mixed results. In general, corre-

lations have been in the .80s or .90s, but poorer results were obtained

by Pollack (1964) and Huber, Daneshgar, and Ford (1971). In the latter

Scase, however, there was evidence that the poor convergence may have been

attributable to noise inheient in the mailed questionnaire response de-

I vice. Future studies, particularly those in real world contexts, should

incorporate reliability measures on the intuitive judgments which are

to be used as validating criteria. Comparisons of different decomposition

methods have revealed a high degree of convergence between non-hierarchical

models, but there is some evidence of poor convergence between hierarchical

and non-hierarchical models. If the latter result is confirmed, additional

4 studies utilizing external validating criteria will be required to determine

the relative merits of hierarchical and non-hierarchical procedures.

Despite these generally encouraging results, however, one important

problem remains unresolved. Decomposition studies have consistently found

that the weights obtained via decomposition tend to be fairly flatly

3
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distributed across attributes. Decomposed weights are flatly dis-

tributed not only relative to intuitive weights (Pollack, 1964; Hoepfl,

and Huber, 1970) but also relative to optimal statistical weights in the

presence of a known criterion (Lathrop and Peters, 1969). Similar pro- U
blems have been encountered in O'Connor's (1972) attempt to apply de-

composition procedures for the development of measures of water quality. [3

Water pollution experts scaled functions over important water parameters

and then assigned weights to each of these factors. The initially estimated L

weights gave a ratio between weights of the most and least important factors U
of only 1.7 to 1. In view of the fact that the most important factor (fe-

cal coliforms) involved a potentially severe health hazard while the least

important factor (color) was of only minor aesthetic significance, this

ratio was viewed as unreasonably small. After discussing this problem with U
his pollution experts, O'Connor was able to obtain a greater degree of var-

iation in the magnitudes of the weighting factors.

But despite the apparent non-optimality of the weights estimated, de- -
composition models have generally done a good job of predicting validating

criteria. O'Connor conducted a sensitivity analysis for his problem and I

found that additive models are remarkably insensitive to minor (roughly

monotone) variations in weights.

While further analysis is required, these results cast a new light on

decomposition. They suggest that the principal advantage of decomposition

over intuition is that it eliminates error variability from the judgment
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process, and that any mechanically implemented model may do a fairly

good job. Thus, for small numbers of dimensions there is little reason

to expect major differences in the relative quality of bootstrapping and

1]decomposition. For a large number of attributes an interesting question

is raised. Bootstrapping is viewed as unsuitable here because it will

assign essentially zero weight to all but a few attributes. But decom-

position may err in the direction of assigning too much importance to

trivial factors. This problem can only be studied in contexts where an

external validating device is available. It also seems that decomposed

weighting procedures should be evaluated in terms of their ability to

j produce weights whose flatness is sensitive to the relative distribution

of weights for the externally specified data generator. Finally, additional

numerical analyses are called for to determine how serious the weighting

L problem is.

Practical advantages of decomposition. We noted earlier that boot-

Hf strapping might be useful in decision making contexts requiring routine

evaluation of the worth of many outcomes. Thus conceived, bootstrapping

is primarily a labor saving device designed to free decision makers for

more interesting tasks. In addition, it was argued (and shown) that boot-

strapping can improve the quality of the evaluative process by filtering

out random error. Decomposition procedures share these virtues. In addition,

decomposition has several advantages over the bootstrapping approach.

a First, decomposition will typically require fewer and easier judgments
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on the part of the decision maker. Using regression procedures for boot- U
strapping the stability of weighting coefficients depends upon the number

of judgDents upon which the model is based. And the number of judgments

required increases with the number of coefficients to be estimated. For U
an evalqiation problem involving ten attributes, thirty judgments seems

an absolutely mini=al basis for model estimation. Laboratory experience

suggests that decision makers will find this a very difficult and time

consuming task at best, and an impossible task at worst. In contrast, a

rating scale or trade-off decomposition over ten attributes can be de-

reloped with relative ease.

Second, decomposition can be applied in contexts where the number of

attributes is so large as to render bootstrapping useless.

Third, decomposition can be applied in contexts where the decision

maker is unsure of his preferences. In many cases a decision maker will
be hard pressed to consider the merits of two or three multi-attributed

outcomes, much less to assign interval scale evaluations to fifty such

S~outcomes. This is especially likely.to be the case when the consequences

of the decision are important. In situations of this type decomposition

provides a tool hhereby the decision maker can organi-'2 his thinking and,

through sensitivity testing, determine which of the attributes really are

crucial to his final decision.

Finally, decomposition is better suited than bootstrapping for ap-

plication in organizations where the decision process i.nvolves many parti-

cipants. As Edwards (1971) has argued, decomposition facilitates division

36

P- ,



of labor, with specialists making assessments within their own area of

expertise, and decision makers with overall responsibility assigning

weighting factors to the component attributes. The methodology can also

serve to improve interpersonal communications involved in the decision

process. Differences of opinion will be directly related to different

interpretations of what the parameters of the evaluation model should be,

and resolution of these differences can be accomplished by discussing

those specific aspects of the evaluation model which do in fact produce

the disagreement. Edwards (1971) discusses a case where decision maker's

thought that they disagreed about the optimal course of action. But when

Ii decomposition models were constructed it was found that though they dis-

agreed about the relative importance of certair attributes, the resulting

models favored the same course of action for both decision makers.

Riskless Choice and the Additivity Assumption

As Edwards and Tversky (1967) noted, additive models have dominated

discussions of riskless choice at least in large part because of their

mathematical simplicity. Their use has been further reinforced by the

degree to which additive statistical models have been able to approximate

M the human judgment process. But, when one's goal is to assist the decision

maker, and to improve the quality of his decisions, then it becomes necessary

to evaluate the appropriateness of the additive form.

The theory of conjoint measurement (Adams and Fagot, 1960; Luce and

I Tukey, 1964; Krantz and Tversky, 1970; Krantz, ,uce, Suppes, and Tversky,

I 1971) provides a formal axiomatic basis for additivity. The theory
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requires that preferances be weakly ordered; that is, that preferences

satisfy the following two properties:

•1 1. Connectedness: for any two outcomes X and Y, either Xý.Y,

Y:ýX, or both.

2. Transitivity: for any three outcomes X, Y, and Z, if XIY

and Y- Z, then XW; Z.

For a finite set of outcomes, the weak ordering property alone is suf-

ficient to guarantee the existence of some (not necessarily additive) Li

value function V such that, for any X and Y: X Y if and only V(X)19V(Y). ]
Further, if V is a value function, then any monotone transform of V is

also a value function. Historically, such functions have been referred

to as "riskless utility functions" (Luce and Suppes, 1965); throughout

this paper, however, we have followed Raiffa's (1969) convention of using

the term "value" in a riskless choice context, and "utility" in a risky

choice setting.

As noted above, the weak ordering property guarantees the existence

of some value function V, but places no restrictions on the functional form

of V. Additional assumptions are required to guarantee that V will be an

additive function of outcome attributes. For the two attribute outcome

case, the major empirically testable requirement is that the double can-

cellation property be satisfied. Let XI,X 2 , and be any outcomes on the

first attribute X, and let Y ,Y 2 , and Y3 be any outcomes on the second

attribute Y. Double cancellation requires that for all XP,X 2 ,X3 ,Y,1 Y2,Y3 ,
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Sif (X1 ,Y 3 )4 (X3 ,Y 2) and (X3 ,Y 11) (X2 ,Y3 ), then (XI,Y 1):(X 2 ,Y 2 ).

Additivity requires further technical assumptions about the denseness

of outcomes along component dimensions. But, for practical purposes,

satisfaction of cancellation is usually taken as sufficient evidence for

the existence of an additive value function V comprised of component

functions V and V such that for any two outcomes X=(Xl ,X 2 ) and Y=(YIY2,

4' X'Y if and only if V1 (X1 ) + V2 (X2 )• VI(Y 1 ) + V2 (Y2 ). Further, when the

other axioms are satisfied, V1 and V2 are defined on an interval scale.

When outcomes are characterized by three or more attributes, the

cancellation axiom is replaced by the more intuitive monotonicity con-

] dition discussed earlier. As before, let the n-attributed outcome Xi

be denoted by the vector (X , X ). Let Y be any subset of these
attributes, and let Z be the vector of attributes not contained in Y

{ Then monotonicity requires that preferences over the Y attributes, holding

the Z attributes at some arbitrary levels, be unaffected by the particular

levels at which the Z attributes are fixed. That is, for all possible par-

titions of X into Y and Z subsets, and for any Yi and YJ, if for any Z'

(Yi,Z')4 (YJ,z'), then for all Z", (Yi,Z")•(Yj,Z"). When weak ordering,

U monotonicity, and the technical assumptions are satisfied then there will

exist interval scale constituent functions V1 ,V 2 ,...,Vn such that for any

two outcomes Xi and Xj, X'i: X if and only if ZkVk(X•) kVk(X).

To summarize, theories of conjoint measurement provide axiom systems
guaranteeing the existence of an interval scale additive value function.

Descriptively, conjoint measurement may be used in place of the analysis of
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variance for testing the additivity assumption and for scaling value

functions. As a normative tool, conjoint measurement is primarily useful

for the insights it provides into the additivity assumption. When cancella-

tion and monotonicity are viewed as appropriate by the decision maker,

then an appropriate additive evaluation scheme can be constructed. But

when these assumptions are not valid, then other evaluation procedures are

called for. As Edwards (1971) has noted, however, it is difficult to imag-

ine circumstances for which monotonicity does not hold. And when it does

not, it will often be possible to restructure the attributes so that it

does.

But despite the extreme generality of additivity in the conjoint

measurement sense, additive statistical models are not quite so robust as

has been commonly asserted in the judgmeht literature. Conjoint measure-

ment views both the dependent and independent variables as having only

ordinal properties and obtains an additive representation by rescaling

both. Analysis of variance, on the other hand, permits non-linear transform-

ations of the independent variables only, and linear regression permits

only linear transformations. Thus, the statistical models which have been

typically applied to experimental data are considerably more restrictive

than the conjoint measurement formulation. Nevertheless, numerical examples

presented by Yntema and Torgerson (1961) and Pollack (1964) have led to

the erroneous conclusion that even with an interval scale dependent variable,

satisfaction of monotonicity is sufficient to guarantee a good fiL for

additive statistical models. This argument has been widely offered as an
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II explanation for why regression studies have found no evidence of non-

additive judgment processes.

The following numerical examples reveal, however, that additive

statistical models are not capable of approximating all simple functions

which satisfy the monotonicity condition (Fischer, in prep.). Only two

functions were considered. The first, Fl. consists of additive terms

- plus all possible two way multiplicative interactions.

1 2XI..."'"Xn) = EXi + E E XiXj

The second function, F2, combines the additive terms with a product over

all terms.

F2XlX2,... )= .EX + XlX2 X

For the present analysis, examples with two, four, and six attributes were

considered. Each attribute could assume integer values from one to ten. For

P each example, samples of size 1000 were used, with attribute values being

randomly generated from a uniform distribution over the integers 1,2,...,10.

To assess the ability of simple additive main effects models to approximate

F and F a correlational analysis was conducted. The results of this
'1 2tkI

analysis are summarized below. Cell entries give the correlation of an

additive model with the non-additive function in question.

Number of Attributes F21 F 2

2 .955 .955

4 .978 .810

6 .987 .707
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The additive approximation gives a good account to F1 which involves only

two way interactions, and the approximation improves with the number of

attributes. The additive approximation to F2 , on the other hand, becomes

poor with an increasing number of attributes.

From a normative standpoint, these results present no problem. If can-

cellation and monotonicity are viewed as appropriate then it is possible to

construct some additive value function which will reflect the ordinal U
properties of the decision maker's preferences. Since riskless choice de-

pends only upon these ordinal properties a function so constructed is appro-

priate for normative application.

From a descriptive standpoint, however, the numerical results presented

above require a reinterpretation of the results of a number of judgment

studies. In particular, studies using an interval scale dependent variable

and a linear statistical analysis have frequently failed to obtain evidence

of substantial departures from additivity. This failure is often attributed

to the robustness of additive models, with references to the Yntema and

Torgerson example (for example, Slovic and Lichtenstein, 1971). The numer- ij
ical results presented above, however, demonstrate that if one takes seri-

ously the interval scale propertiez of his dependent varia.ble, then an

additive approximation can give a good fit to only a limited subset of the

models satisfying the monotonicity condition. As a consequence, the success

of linear statistical models in explaining data may be considerably more

informative about the underlying psychological processes than has generally

been realized. Anderson (1970) describes a number of procedures which are

useful for extracting such information.
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a bMULTI-DIMENSIONAL UTILITY ASSESSMENT UNDER RISK

The Decision Theory Approach

Ii Choice is said to be risky when the decision maker is unsure of the

consequences which will result from each possible course of action, but

is able to express this uncertainty in the form of probability distri-

butions over outcomes. The term risky has frequently been restricted to

decision making contexts for which some "objective probability" measure

jj is defined. A growing number of decision theorists, however, are now

adopting the Bayesian approach which views probability as a measure of the

[1 decision maker's knowledge or beliefs about states of the world (Ramsey,

1931; Savage, 1954; Kyburg and Smokler, 1964; Raiffa, 1968). Throughout

this discussion we will adopt the position that some (possibly subjective)

[ probability measure is available, and thus, that the decisions to be made

can be appropriately viewed as risky.

Ii Decision theory usually treats the decision maker's (DM's) uncertainty

about the consequences of actions as arising from uncertainty about states of

1 2 nnature or the world. Let (A ,A ,...,An) be the set of actions available to

LI DM, and let (SI,s 2... ',Sr) be a mutually exclusive and exhaustive set of

states of the world. For example, the action alternatives might be "Carry

an umbrella to work" and "Don't carry an umbrella to work", and the states

of the world "Will rain" and "Won't rain". Each act-state pair defines a

consequence or outcome. Notationally, let X denote the outcome arising
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from the i-th act and the j-th state of the world. In the unbrella

example, the outcomes are "Carry umbrella; Rain", "Carry umbrella; No

rain", "Don't carry umbrella; Rain", and "Don't carry umbrella; No rain".

Each course of action can result in one and only one outcome. But

at the time when he must make his decision, DM is unsure of what that

outcome will be. By assumption, however, he can specify a set of proba-

bilities plP 2,..,'pr' where pj is the probability of state Sj and where

jp. = 1. So each action Ai may be viewed as giving rise to a probability

distribution or lottery over possible consequences. Notationally, let Li U
iU

be lottery of consequences associated with A , where
Li Pl'il Xi2 ir;P ';rx)
L = (p1,X ;p1 X i2..;prX i

That is, if action Ai is chosen, outcome Xil will occur with probability

outcme i2pI outcome X2 with probability p2, and so on. The problem confronting

DM is to select that course of action whose associated lottery of conse-

quences is most desirable.

A number of procedures for choosing between probability distributions

of outcomes have been proposed (Luce and Raiffa, 1957), but the expected

utility principle has dominated normative discussions of the risky choiceA prblem According to this principle there exists some interval scale

utility function U such that DM should choose that course of action for

which the associated expected utility is greatest. Given a utility func-

tion defined on outcomes, the expected utility for action Ai is given by
i il i2 irEU(A) =PlJU(X) + P2 U(Xi) + + prU(Xr).

The expected utility principle is not new; Bernoulli discussed it
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I!during the 1700's. But its prominence as a normative principle was greatly

enhanced when von Neumann and Morgenstern (1944) showed that it could be

deduced from a set of basic principles of rational choice, such as the

Stran&itivity and weak ordering properties discussed earlier. Other axiom

systems for expected utility theory have since been developed (Herstein

U and Milnor, 1953;Savage, 1954; Luce and Raiffa, 1957). Elementary present-

S~ations of expected utility theory may be found in Raiffa (1968), Coombs,

Dawes, and Tversky (1970), or Lee (1971), and more formal treatments in

Luce and Raiffa (1957) and Fishburn (1970).

The Distinction Between Value and Utility.

B As noted earlier, decision theorists frequently distinguish between

risky and riskless utility functions. We, however, have adopted the con-

vention of restricting use of the term utility to risky choice contexts,

and have used the term value in riskless contexts. Technically, value and

utility functions may be defined as follows (Fishburn, 1968):

1 2 n
1 1) A function V defined on a set of outcomes (X ,x2,...,X ) is said

to be a value function whenever for any Xi and XJ in the outcome

Al set

X-1 Xj if and only if V(Xi)• V(xJ),

Further, if V is a value function, then any monotonic transform

of V is also a value function.

2) A function U defined on a set of outcomes (X 1,X ,...,Xn is said to

be a utility function whenever for any X and Xi in the outcome set

Sa) Xi. XJ if and only if U(Xi) U(XJ),
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b) and U(p,Xi;l-p;Xj) = pU(Xi) + (l-p)U(Xj).

And if U is a utility function, then any positive linear trans-

form of U is also a utility function.

Thus, value and utility functions differ in their uniqueness proper- I

ties. If DM maximizes the expectation of U under risk, then it is also

appropriate that he maximize U in the absence of risk. But if DM.maximizes V

in the absence of risk, it does not follow that he should maximize the B
expectation of V under risk. For example, most people prefer more money to

less, and so (all other value factors being held constant) may be viewed j
as maximizers of monetary return in the absence of risk. But in general

people do not act as maximizers of expected monetary return under risk; they

buy insurance, for example, even though the expected monetary return of such

a purchase is negative. If, however, the DM is an expected utility maximizer,

then there will exist some transformation on dollars, U($), such that DM

will maximize the expectation of U($) under risk. Thus, utility may in this

case be viewed as a transfoimation on dollars reflecting DM's attitude

toward risk. Raiffa (1968) provides an elementary discussion of the utility

theory treatment of aversion, or attraction, to risk.

A similar argument can be made in the context of multi-attribute
4' preference. Though an additive function V may be an appropriate measure of

value in a riskless context, it does not follow that DM should maximize the

expectation of V in the presence of risk (Raiffa, 1969).

Utility for Multi-attribute Outcomes.

In principle utility theory is applicable to any class of outcomes. But

in practice utility theory applications have generally been restricted to
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the single attribute case. Recently, however, utility theorists have devoted

considerable attention to the properties of various utility functions

defined on multi-attribute outcomes. As in the riskless case, additive

functions have received extensive consideration. Assuming the existence of
some function U satisfying the utility theory axioms, Fishburn (1964) has

specified an additional assumption which guarantees that U will be additive.

Central to Fishburn's development is a relationship between finite gambles

which we will term marginal equivalence. Two gambles (or lotteries) L and

2L are marginally equivalent if and only if they give rise to identical

marginal probability distributions over outcome attributes. This relation can

easily be illustrated for the :case of two attribute outcomes. Let L be

2
(I/2,(X"1,Y");1/2,(X',Y')) and L be (l/2,(X",Y');1/2,(X',Y")). For both

lotteries the probability of obtaining attribute X" is 1/2 and the probabil-

ity of obtaining attribute X' is 1/2; similarly, the probabilities of obtain-

ing attributes Y" and Y' are also 1/2 for both lotteries. Thus, the two

lotteries are marginally equivalent. Using this definition we can now state

the Fishburn marginality assumption - for all lotteries L and L, if L

and Lj are marginally equivalent, then DM is indifferent between L' and Lj.

Given the assumed existence of some utility function U defined on a set of

multi-attribute outcomes, Fishburn has shown that U is additive if and only

if the Fishburn marginality assumption is satisfied.

Thus it is possible to assess the desirability of 'he additive formulation

by examining the implications of the marginality assumption. For example,

consider the following pair of marginally equivalent lot-eries:

47



L with probability 1/2, receive $5000 and a 1972 Volvo LI
Lwith probability 1/2, receive $10 and a rusty hubcap

L= with probability 1/2, receive $5000 and a rusty hubcap

with probability 1/2, receive $10 and a 1972 Volvo. g
An additive utility function defined on dollars and automobile components

exists if and only if the decision maker is indifferent between LI and L2  ii
A casual survey indicates that most people are not indifferent. They prefer

L which provides a sure thing of obtaining either $5000 or a Volvo. In

general, it seems that there will be few circumstances for which the marg-
'3

inality assumption will be satisfied. And when it is not, non-additive

utility functions will be required.

Keeney (1969,1971) has discussed a special class of non-additive util-

ity functions which arise when the mutual utility independence condition L
(defined below) is satisfied. Let X. be the j-th attribute of the generic out-

come (X,X 2 ,...,Xn), and let X. be the vector of remaining attributes for

this generic outcome. Then Keeney's mutual utility independence condition

requires that for all j = 1,2,...,n,

U(Xj X!) = cI(XM) + c2 (X!) U(XjIX) c2 0.

That is, utility for X. conditional upon X! is a positive linear transform-3 3

ation of utility for X. conditional upon any other X0 . Keeney showed that3 21

whenever the utility theory axioms are satisfied and mutual utility independ-

ence is also satisfied, then the utility function U will consist only of

additive and multiplicative components. For example, in the three dimen-

sional case there will exist conditional utility functions U1 , U2 , and U3

48

•,'



such that
U(XI,X 2,X3 ) = UI(XI) + U2(X2 ) + U3 (X3 ) + klUI(XI)U2(X 2)

+ k2UI[XI)U 3 (X ) + k3 U2 (X2)U3 (X3) + k4UI(XI)U 2 (X2)U 3(X3),

where k 2, k'2 k3, and k4 are constants to be empiricaIly determined.

U• Keeney terms functions of this type quasi-additive. It can easily be shown

that the existence of a quasi-additive risky utility function implies the

[ existence of an additive value function, since mutual utility independence

[ implies both cancellation and monotonicity.

Raiffa (1969) has discussed an even less restrictive class of non-

additive utility functions. Given the existence of an additive value

function V and given that the utility theory axioms are satisfied, then

I by the definition of value and utility functions there exists some mono-

tone cransform P such that

U(XlX 2 ,...,X) = 4(V(XlX 2 ,... Xn))

S= (VI(XI) +V 2 (X2 ) + ... + Vn(Xn)).

Methods for assessing the functional form of (P will be discussed in a

[3 subsequent section of this paper.

Utility Theory as a Descriptive Model of Human Decision Making.

Though derived from normative principles, utility theory has also

been applied descriptively. Reviews of the relevant literature may be

found in Edwards (1961), Luce and Suppes (1965), and Becker and McClin-

tock (1967). In general, the expected utility hypothesis has been tested

only for decisions involving choices between simple gambles (Mosteller

and Nogee, 1951; Davidson, Suppes, and Siegel, 1957; Coombs, Bezembinder,

"i {~and Goode, 1965). To illustrate these gambling studies we will consider
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tesults of am experi•nt c-nducted by Tversky (1967). This study is•Li

cstaim in two regards. First, it provides the most direct test of

the eiected utility. hypothesis. Second, it is the only study to incorpor-

ate madti-attribute oýatcames. Subjects were presented with gambles of the "

form (p;x,y), ta be interpreted as 'With probability p you will receive x

rac:s of cigarettes 2nd y bags of candy; with probability 1-E you will re-

cefie nothing." Subjects were then asked to state minimum selling prices for

these gauhbes. Assuning that the subjects were utility maximizers, and arb-

izrarily letting the utility of receiving nothing be zero, we have 71J
COMP) = s(p) u(x,y),

where USP is the ainimu2 selling price for the gamble in question, and S(p)

is the subjective probability of winning given objective probability p of-

winning. Taking logs of both sides of this equation J

log U(!4SP) = log S(p) + log U(x,y).

As a consequence, the expected utility hypothesis can be satisfied if and only

if probabilities and payoffs combine additively in the conjoint measurement

.sense. Tversky's data provided strong support for the expected utility hypothesis.

In addition, he obtained utility functions for single dimensional outcomes in-

volving either cigarettes or candy and, assuming that utilities for two dimen- -!

sional outcomes were additive, used these functions to predict the selling prices

for the two attribute bundles of cigarettes and candy. The accuracy of

these predi:tions indicated that in this case utilities did combine additively

over attributes in the presence of risk. In general, Tversky's study pro- A
vides strong support for an expected utility interpretation of decision
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making under risk. A more recent study conducted by Goodman, Saltzman,

Edwards, and Krantz (1971) further attests to the predictive power of

expectation models. They found that a simple expected monetary value

maximization model accounted for almost all of the systematic variance in

gambling behavior involving fairly sizable outcomes.

Lichtenstein and Slovic (1971), however, have questioned whether

expected utility models do adequately represent even simple decision

making processes. They found that different response modes led to dif-

f ferent preference orderings on gambles, a result inconsistent with the

utility theory axioms. They argued that descriptive models of human choice

_ I lmust take into account cognitive factors which are ignored by utility models.J. Nevertheless, the results cited above leave little doubt that utility theory

[ j L. provides a good first approximation to decision making under risk, at least

IL for simple gambling situations. This conclusion will be seen to be crucial

for those who wish to apply utility theory as a no mative procedure for

U• making real world decisions.

Multi-attribute Utility Assessment:Aiding the Decision-maker.

The most direct normative applications of the expected utility theory

'P• principles have been in the field of mathematical statistics (Savage, 1954;

Chernoff and Moses, 1959; Raiffa and Schlaiffer, 1961; DeGroot, 1970). In

addition, the discipline of decision analysis has arisen. Decision analysis

is a set of procedures for combining the expected utility principle with a

Bayesian interpretation of probability for the purpose of making real world
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decisions (Edwards, Lindman, and Phillips, 1965; Raiffa, 1968; Howard,

1968a, Howard, 1968b). In.the past, decision analysts were primarily con-

cerned with the problem of probability assessment (for example, Edwards,

Phillips, Hays, and Goodman, 1968). Only recently has it become apparent

that utility assessment procedures are insufficiently developed for app-

lication in many real world contexts. In this section we will consider

first the general logic of utility assessment, then practical procedures

for coping with the additional complexities introduced by multi-attribute

outcomes.

The Logic of Utility Assessment. The decision analysis approach rests

on the assumption that, when faced with complex problems and left to their

own devices, decision makers do not act in an expected utility maximizing

fashion. The formal methods of decision analysis are tools for producing

more nearly optimal decisions. Yet, because decision analysts justify their

approach by arguing the normative merits of the utility theory axioms a

mild paradox arises. For a proper utility function can be assessed only if

the judgments upon which it is based are made in an expected utility maximizing .I

fashion. Since utility functions are typicelly inferred from judgments about

simple gambles, the decision analyst must in effect assume the decision maker .1

is an expected utility maximizer for simple decisions, but is sub-optimal when

faced with complex decisions. This does not seem an unrealistic assumption.

Although a number of procedures for assessing risk), utilities have been

developed, they utilize a common logic. To illustrate this logic we will con-

sider Raiffa's (1968) indifference probability procedure. Consider a set of
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outcomes (X ,X2,...^. Let X and X be the most and least preferred

elements of this set, and arbitrarily assign these outcomes utilities of

1.0 and 0.0 respectively. Then the utility of any other outcome Xi may be

obtained as follows. The utility theory axioms assert that for any outcome

X i there exists some probability .i such that DM is indifferent between X

and the lottery (p ,X ; 1-p , X ). So from X A.(p ,X ; l-p 1 ,X,) we have

Su(Xi)=p ipU(X*)+(l-pi)U(X). Or U(X i)=pi.

Since the procedure is neutral with respect to the composition of

<1 outcomes it can in principle be used for either single or multi-attributed

½ ~outcomes. In practice, however, the method is difficult to apply in the

multi-attribute case. To ask decision makers to simultaneously aggregate

value and risk over ten or more attributes seems unreasonable, unless one

is willing to tolerate the possibility of a substantial degree of unreliability.

And even when the DM is able to make reliable judgments, the timne required for

evaluating a large number of alternatives may in many cases be prohibitive.

To offset these problems, decomposition procedures for risky utilities

have been propozed. Central to these procedures is the assumption that DM

can make meaningful probabilistic utility assessments within a given dimension.

In addition, some of the procedures require DM to make "a few" such assess-

ments across dimensions.

Before proceeding further, we will briefly consider some results ob-

tained by Ginsberg (1969) which strongly indicate that probabilistic utility

assessments can be made in a reliable fashion. Ginsberg was concerned with

~ 4, the problem of scaling the utility of severe outcomes (such as loss of sight

or limbs) which arise in the course of medical practice. Three trained
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physicians assigned utilities to eight such outcomes using the indif-

ference probability method described above. In addition, they directly

estimated the dollar amount which they themselves would pay in order to

avert each of these eight dire outcomes. Finally, each physician assessed LI
a utility function for money. The set of scaling methods used permitted

Ginsberg to compute the direct dollar judgments implied by the indifference

probability judgments. The correlations between actual dollar bids and pre-

dicted dollar bids were remarkably high; .997, .983, and .998 for the three
doctors respectively. This high degree of convergence indicates that the

indifference probability judgment task did "make sense" to the doctors, and

that they could respond to it in a meaningful fashion.

Decomposed Utility Assessment. Three general methods for obtaining a

decomposed risky utility function have been proposed. These methods are

based on the additive, quasi-additive, and 0 (V) utility models, respectively.

Recall that all three models assume the existence of some function U satis-

fying the standard utility theory exioms. The models differ in terms of how

component attributes contribute to overall utility. The additive model asserts

that the overall utility of a multi-attribute outcome is an additive function

of the utilities of its component attributes. For example,

U(X1 ,X2 ) = UI(X 1) + U2 (X2 ).

In the quasi-additive model, overall utility is a function of both additive

and multiplicative cross-product terms. For example,

U(XIX 2 ) = UI(XI) + U2 (X2 ) + kUI(XI)U 2 (X2.
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II
Finally, the 4)(V) model simply asserts that overall utility is a

monotonic function of overall riskless value. For example, if V is

an additive value function such that V(XI,X2)=VI(X 1 )+V2 (X2), then

[this model assumes the existence of some monotone transform it such that

BU(XI,X2)= $(V 1[X1]+V2 [X2]). In this section we will consider procedures

for obtaining decomposed utility functions of the three forms described

Sabove. In the final section we will discuss experimental attempts to

validate these decomposition procedures.

As noted earlier, the additive form is appropriate only when the ex-

pected utility, monotonicity, and marginality assumptions are satisfied.

When this is the case, the following procedure devised by Raiffa (1969)

may be used to obtain an additive utility function. Like the rating scale

procedure for riskless choice, Raiffa's method involves four major steps.

S1. Within each attribute, DM must apecify the most and least desirable

outcomes which may feasibly occur. Notationally, let X and X. denote the

most and least desirable outcomes with respect to the i-th attribute.

Arbitrarily, we assign utilities of 1.0 and 0.0 to these two outcomes

respectively.

' 2. DM must next assign utilities to intermediately valued outcomes

on each attribute. Again, let (X0,X2,..., 0n) be the vector of the "standard

; ioutcome". Then for each attribute, DM can assess a utility function over

the possible outcomes on this attribute assuming all other attribues to be

held constant at their standard values. These utility functions are obtained

using the indifference probability method.
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3. Cross dimensional scaling is accomplished as follows. Let

X =(X 1 ,X 2 ,...,Xn) and X,=(XIX 2 ,.. n be the best and worst multi-

attributed outcomes, and arbitrarily assign them overall utilities of 1.0

and 0.0 respectively. Let (Xi ,Xi, ) denote the consequence which has the

best'feasible outcome with respect to the i-th attribute and the worst

feasible outcome with respect to all other attribues. For each attribute

DM must specify a probability wti such that he is indifferent between

(Xi ,Xi,) and the lottery (it ,X ;I-Fi ,X). It can be shown that

t is a measure of the utility range associated with the i-th attribute.

Under the assumption that U is additve, .iT 1 = 1.0, so the untransformed

7t 'may be used as scaling factors.

4. The utility of any multi-attributed outcome is thus given by

U(Xk' X k"'X ) = i U(X k). When a decision is to be made, that action

with the greatest associated expected utility is selected.

Given the marked similarity between this method and the additive

rating scale procedure for riskless choice, it might seem that the two

methods should be interchangeable. Raiffa (1969) has shown, however, I
that even when a risky additive utility function exists, it does not

necessarily follow that a bona fide riskless additive value function will

be appropriate in a risky context. On the other hand, if an additive

utility function is appropriate in a risky context, then it is also appro-

priate in a riskless context. Intuitively, the probabilistic procedure

described above reflects attitude toward risk within each attribute whereas

the rating scale method does not.
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A quasi-additive utility function involves additive and multi-

plicative cross product terms, and arises when the expected utility,

monotonicity, and mutual utility independence conditions are satisfied,

but the marginality assumption is not. Given that a quasi-additive form is

appropriate, the following decomposition procedure may be employed (Keeney,

1969; Raiffa, 1969).

1. Utility functions within dimensions may be obtained as in the addi-

tive case.

U 2. In order to establish a common scale of measure across attributes

DM must intuitively assess, for each attribute, the utilities of

0 0 0 0 0 o0o o,--0 .,X._ ,nidXi+1,,. ,...,X ,X + ,X
(XI X2O'..xi-l 11 XiI + ,x n0) and (X1,X2" i-l i*' i+l

L ... ,IXn). These judgments determine the utility range associated with each

of the dimensions, given t hat all other dimensions are held at their standard

U• levels. (In contrast to the additive model, utility ranges for the quasi-

additive model depend upon the state of other attributes.)

3. Weighting factors for the multiplicative terms of the quasi-

additive model are obtained by having the DM intuitively assess the

utility of all the "corner points" in the outcome space. For example,

11 with three attributes there are eight corner points: (Xl,,X 2 ,,X 3 ,),
,** * * * *

(X 1,X 2*,,X3,), (Xl,,*X2 ,X3,), (Xl,,X2,,'X3 9,(X1 ,X2 ,X3,), (XI1 ,X2,,X 3)

(X1 *J,,X2 ,X3 ), and (X1 ,X2 ,X3 ). In general, there will be 2n corner

points, where n is the number of attributes. Keeney (1969) provides

formVlas for using these corner point assessments for weighting the

cross product terms.
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The O(V) procedure is the most general of the decomposition

methods. It requires only that the expected utility and monotonicity

assumptions be appropriate. And despite its generality, it may well

be the easiest utility assessment procedure to implement. In the first

stage a riskless value function must be developed. Either the additive

rating scale or trade-off procedures may be used. When the trade-off

method is employed it may be quite simple to obtain the desired risk U
transformation 0. Suppose, for example, that all outcomes have been

traded off into a single continuous dimension such as dollars or lives

saved. Then 0 may be obtained by assessing a unidimensional risky

utility function over this continuous attribute. U
It is also possible to obtain 0 when a rating scale decomposition j

is used. Here the decision maker is required to directly assess the

utility of a few well chosen multi-attribute outcomes (Raiffa, 1969).

The values of these outcomes (as indicated by the additive rating scale

model) are then plotted on one axis, and the utilities of these outcomes i
on the other axis. Utilities for outcomes having other values can be

obtained by interpolating a smooth curve through the selected points

for which utilities have been assessed.

In working with subjects the author has observed that the ýD(Value)

approach is quite easy to implement because it requires few probabilistic

judgments of the subject. Moreover, because this method requires the least

restrictive assumptions, it can be appropriately utilized when the additional

assumptions required of the additive or quasi-additive methods are also

satisfied.
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Experimental Validation of Decomposed Utility Procedures

11 To date only three validation studies have been conducted, and

all three have used convergence between utility measures as the val-

idating criterion. Von Winterfeldt (1971) had subjects evaluate the

11 attractiveness of apartments described by fourteen attributes. In

the first stage of the experiment subjects assigned overall intuitive

U utilities to a set of hypothetical apartments using Raiffa's indif-

ference probability procedure. Next, additive decomposed risky utility

functions were assessed by each subject using the method discussed

in the previous section. Finally, intuitive overall utilities were

reassessed. The mean correlation between the decomposed utilities and

1! the second set of intuitive utility judgments was .84.

In a similar study Fischer (in prep.) had subjects assign utilities

to hypothetical compact cars described by either three or nine attributes.

For three dimensions the convergence between intuitive and additive de-

composed utilities was quite high (median R=.93); but for nine dimensions

convergence dropped off slightly (median R=.85).

Finally, Fischer (in prep.) has contrasted the predictive power of

Sadditive utility decompositions with that of D(V) decompositions. The

I 4(V) method could be expected to be superior under either of two cir-

cumstances. First, if intuitive utility assessments are systematically

non-additive then the $(V) method, which can capture this non-additivity,

should oitperform the additive utility decomposition, which cannot. Second,
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even if intuitive utility assessments are additive, the 4(V) method

is still appropriate and might produce less judgmental error, thus

yielding superior predictions of intuitive judgments.

In Fischer's second study, subjects evaluated jobs described by

three attributes--city, salary, and type of work. First, overall in- U
tuitive utilities were assessed, then additive and 4ý(V) decompositions

constructed. Each subject assigned utilities to all 27 combinations

of the three attributes,'thus permitting a direct test of the hypothesis

that intuitive multi-attribute preferences under risk are additive. U

Next, each subject made the judgments required for constructing additive "

and D(V) decomposition models. The results of this study strongly in-

dicated that an additive formulation was adequate. An across subjects

analysis of variance was performed on the intuitive utility judgments.

Additive main effects accounted for 98.8% of the final effects sums of £3
squares. In addition, the additive and $(V) decompositions provided -)

essentially equal prediction of the intuitive judgments, with median

correlations of .925 and .935, respectively. Finally, a reliability

ainalysis indicated that the degree of prediction afforded by the de-

composition models approached the limits set by the error variance in

the intuitive judgments.

Nevertheless, risky multi-attribute utility assessment deserves

considerably greater attention. The use of intuitive judgments as a

validating device here is clearly subject to criticism. In the riskless
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case, the additive formulation is consistent with basic normative

assumptions. But, in a risky context the additive form requires

questionable assumptions. And it may be the case that intuitive

judgments are additive simply because the decision maker is unable

to subjectively process information in a more complex fashion. If

this were the case, then non-additive forms might be preferred on

normative grounds even if they afforded poorer prediction of intuitive

judgments. These questions can be resolved only through additional

i research.
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